MicroRNAs in metabolism

نویسندگان

  • S Vienberg
  • J Geiger
  • S Madsen
  • L T Dalgaard
چکیده

MicroRNAs (miRNAs) have within the past decade emerged as key regulators of metabolic homoeostasis. Major tissues in intermediary metabolism important during development of the metabolic syndrome, such as β-cells, liver, skeletal and heart muscle as well as adipose tissue, have all been shown to be affected by miRNAs. In the pancreatic β-cell, a number of miRNAs are important in maintaining the balance between differentiation and proliferation (miR-200 and miR-29 families) and insulin exocytosis in the differentiated state is controlled by miR-7, miR-375 and miR-335. MiR-33a and MiR-33b play crucial roles in cholesterol and lipid metabolism, whereas miR-103 and miR-107 regulates hepatic insulin sensitivity. In muscle tissue, a defined number of miRNAs (miR-1, miR-133, miR-206) control myofibre type switch and induce myogenic differentiation programmes. Similarly, in adipose tissue, a defined number of miRNAs control white to brown adipocyte conversion or differentiation (miR-365, miR-133, miR-455). The discovery of circulating miRNAs in exosomes emphasizes their importance as both endocrine signalling molecules and potentially disease markers. Their dysregulation in metabolic diseases, such as obesity, type 2 diabetes and atherosclerosis stresses their potential as therapeutic targets. This review emphasizes current ideas and controversies within miRNA research in metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications

Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...

متن کامل

An unbiased silencing screen in muscle cells identifies miR-320a, miR-150, miR-196b, and miR-34c as regulators of skeletal muscle mitochondrial metabolism

OBJECTIVE Strategies improving skeletal muscle mitochondrial capacity are commonly paralleled by improvements in (metabolic) health. We and others previously identified microRNAs regulating mitochondrial oxidative capacity, but data in skeletal muscle are limited. Therefore, the present study aimed to identify novel microRNAs regulating skeletal muscle mitochondrial metabolism. METHODS AND RE...

متن کامل

Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism

Laying performance is an important economic trait in hens, and this physiological process is largely influenced by the liver function. The livers of hens at 20- and 30-week-old stages were investigated using the next generation sequencing to identify the differences of microRNA expression profiles. Compared with the 20-week-old hens, 67 down- and 13 up-regulated microRNAs were verified to be si...

متن کامل

Differential genes expression analysis of invasive aspergillosis: a bioinformatics study based on mRNA/microRNA

Invasive aspergillosis is a severe opportunistic infection with high mortality in immunocompromised patients. Recently, the roles of microRNAs have been taken into consideration in the immune system and inflammatory responses. Using bioinformatics approaches, we aimed to study the microRNAs related to invasive aspergillosis to understand the molecular pathways involved in the disease pathogenes...

متن کامل

Preliminary evidence supports circulating microRNAs as prognostic biomarkers for type 2 diabetes

Background Circulating microRNAs are emerging as potential prognostic biomarkers for the development of type 2 diabetes. However, microRNAs are also associated with complications from impaired glucose metabolism (e.g. endothelial cell function). Prior studies have not evaluated for associations between trajectories of circulating microRNAs with trajectories of fasting blood glucose over time an...

متن کامل

Role of microRNAs in the Warburg effect and mitochondrial metabolism in cancer.

Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2017